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Abstract 19 

Myographic signals can effectively detect and assess subtle changes in muscle function; 20 

however, their measurement and analysis are often limited in clinical settings compared to inertial 21 

measurement units (IMUs). Recently, the advent of artificial intelligence (AI) has made the 22 

analysis of complex myographic signals more feasible. This scoping review aims to examine the 23 

use of myographic signals in conjunction with AI for assessing motor impairments, while also 24 

highlighting potential limitations and future directions. We conducted a systematic search using 25 

specific keywords in the Scopus and PubMed databases. After a thorough screening process, 111 26 

relevant studies were selected for review. These studies were organized based on target 27 

applications (measurement modality, modality location, and AI model purpose/application), 28 

sample demographics (age, sex, ethnicity, and pathology), and AI models (general approach and 29 

algorithm type). Among the various myographic measurement modalities, surface 30 

electromyography (sEMG) was the most commonly used. In terms of AI approaches, machine 31 

learning with feature engineering was the predominant method, with classification tasks being the 32 

most common application of AI. Our review also noted a significant bias in participant 33 

demographics, with a greater representation of males compared to females and healthy individuals 34 

compared to patient groups. Overall, our findings suggest that integrating myographic signals with 35 

AI has the potential to provide more objective and clinically relevant assessments of motor 36 

impairments. 37 

Keywords: machine learning, deep learning, clinical assessment, measurement modalities,   38 
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1. Introduction 39 

Motor impairments are prevalent in various clinical conditions such as stroke [1], spinal 40 

cord injury (SCI) [2], cerebral palsy (CP) [3], amyotrophic lateral sclerosis (ALS) [4], myopathy 41 

[5, 6], neuropathy [5, 6], multiple sclerosis (MS) [7], and Parkinson’s disease (PD) [8], 42 

significantly affecting patients’ ability to perform daily tasks and independence, and thus their 43 

quality of life. Objective assessment of motor impairments is crucial for enabling tailored care 44 

(diagnosis, treatment, and intervention) for such wide range of clinical population in need [9]. 45 

However, current clinical assessments often rely on subjective evaluations, leading to several 46 

limitations such as inter-rater variability [10] and ceiling effect [11]. On the other hand, laboratory-47 

based quantification of motor impairment is not readily translatable to clinical settings, mainly due 48 

to practical barriers in transferring the technical resources (e.g., equipment, knowledge, and skills) 49 

required for acquisition, processing, and analysis/interpretation of the data collected [12]. There is 50 

an urgent need for objective clinical tools that can provide timely and precise assessments of motor 51 

impairments for effective intervention and precise medicine. 52 

Recent advances in sensor and artificial intelligence (AI) technologies offer promising 53 

avenues for quantitative assessment of motor impairments in the real-world (e.g., clinical and/or 54 

daily setting) [13, 14]. As such, a large volume of studies in the past decade has focused on 55 

integrating AI with sensor-based measurements of human movement to recognize pattern/activity 56 

[15-23] or user intent [24-26], detect disease symptoms or adverse events [27-32], or provide bio-57 

feedback during movement training/therapy [33]. Among the many sensor modalities used, inertial 58 

measurement units (IMUs) have dominantly been adopted, mainly owing to their compact size, 59 

low cost, ease of use (e.g. placement), and reliable performance [34, 35]. However, IMUs only 60 

measure motion, solely derived from kinematic parameters (i.e., translational acceleration, 61 
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rotational speed, and orientation in space), and provide no information about the muscle activity 62 

or contraction that caused the movement, which often can result in little to no observable “motion” 63 

(i.e., isometric). For most, if not all, motor impairments, however, muscle activity is one of the 64 

most critical pieces of information for a comprehensive understanding of the underlying 65 

physiological mechanisms, as it is the ultimate manifestation of how the nervous system controls 66 

the physical part of the human body (e.g., limb segment). 67 

We postulate that myographic signals — physiological activities measured from muscles 68 

— confer more than what IMU can offer, especially for motor impairment assessment. For 69 

example, myographic signals reveal complex physiological patterns such as coactivation [36, 37], 70 

fatigue [38-40], response to various types of sensorimotor stimulus [41, 42], motor unit recruitment 71 

[43], and the potential source (e.g., brain areas) governing the neural drive to the muscles [44, 45]. 72 

These insights cannot be captured through kinematic measurements alone and are crucial for 73 

understanding the pathophysiological mechanisms underlying abnormal movement patterns in 74 

clinical populations. By leveraging the information acquired with myographic signals, clinicians 75 

can detect subtle changes in muscle function and identify biomarkers that reflect the status of 76 

neuromuscular diseases, allowing for an evaluation of muscle function in real-world settings. 77 

Despite their significant potential, the technical challenges involved in acquiring, processing, and 78 

analyzing myographic signal (signal-to-noise ratio, location dependence, motion artifact, etc.) 79 

hinder the widespread adoption in clinical settings [46, 47]. Given the premise that AI is 80 

specialized in automated data processing/analysis and making prediction/inference based on 81 

potential patterns underlying large/complex set of signals, the AI-powered motor impairment 82 

assessment using myographic signals can address these limitations and offer a promising tool that 83 

provides more objective, precise, and clinically relevant information and insights for motor 84 
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impairment assessment in clinical settings. Despite its promise, the use of myographic signals with 85 

AI models has received relatively little attention compared to IMU-based approaches, as evidenced 86 

by our preliminary literature search in Scopus and PubMed databases (Figure 1). 87 

 88 

 89 

Figure 1. The number of publications from 2014 to 2024 in the Scopus (A) and PubMed (B) 90 

databases. The publications are categorized by measurement modality used: inertial measurement 91 

units (IMUs) vs. myographic signals. While there has been an evident rise in the number of 92 

research using each IMU and myographic signals, myographic signals have consistently received 93 

less attention than IMUs. 94 

 95 

In the light of this knowledge gap, the purpose of this study is to provide a comprehensive 96 

overview of current use of myographic signals with AI for motor impairment assessment in the 97 

aspects of target application (e.g., classification, regression), sample demographics (e.g., age, sex, 98 

ethnicity, pathology), and AI model (e.g., machine learning, deep learning) and to discuss potential 99 

limitations and future directions for each of the above aspects.  100 
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2. Methods 101 

A comprehensive literature search was conducted using Scopus and PubMed databases, 102 

followed by a study selection process in general accordance with the Preferred Reporting Items 103 

for Systematic Reviews and Meta-Analyses (PRISMA) guideline. The initial search was 104 

performed using combinations of the following terms: “AI”, “artificial intelligence”, “machine 105 

learning”, “deep learning”, “neural network”, “medical”, “clinical”, “patient”, “assessment”, 106 

“monitoring”, “diagnosis”, “tracking”, “impairment”, “motor”, “movement”, “force”, “torque”, 107 

“strength”, “kinematics”, “myogram”, “myography”, “EMG”, “MMG”, “FMG”, “OMG”, “SMG”, 108 

“ultrasound”, and “muscle”. The initial search results were further filtered with the following 109 

criteria: 1) restricting to works published within the last decade (2014–2024); 2) restricting to 110 

English-written, peer-reviewed journal article; and 3) excluding animal works. Finally, each study 111 

was manually screened, sequentially in the order by title, abstract, then full-text, based on the 112 

following criteria: 1) targeting clinical application; 2) measuring myographic signals; 3) utilizing 113 

machine learning and deep learning models; and 4) reporting results using myographic signals 114 

only. Additionally, relevant articles that satisfied the inclusion criteria were further identified 115 

through a manual search. The PRISMA flow diagram is shown in Figure 2. 116 
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 117 

Figure 2. Overview of the PRISMA process for conducting a literature search, screening articles, 118 

and including relevant studies for this scoping review.  119 
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The selected studies were reviewed in detail, specifically focusing on the following scopes: 120 

● Target Application. The selected studies were categorized into measurement modality, location 121 

(e.g., target muscle or joint), and purpose of the AI model/application. From detailed review 122 

of the selected studies with respect to this scope, we sought to determine whether the use of 123 

myographic signals indeed can provide more tailored insights into assessing motor impairment 124 

and/or allow for better performance of AI models compared to other measurement modalities 125 

such as IMU. 126 

● Sample Demographics. Participant population in the selected studies were analyzed in terms 127 

of the portions between healthy individuals vs. patients, males vs. females, and ethnicities or 128 

origins of the populations based on study authors’ affiliations. In addition, we determined the 129 

age distribution among the healthy and patient groups in the studies where the mean and 130 

standard deviation values were reported, as well as the relationship between the number (i.e., 131 

absolute count) of male vs. female participants. From this scope, we sought to determine 132 

whether there exist any potential biases that may hinder the generalization of the 133 

developed/applied AI models, accounting for the heterogeneity in a particular clinical target 134 

population, or even broader populations in general. 135 

● AI Model. The AI models used in the selected studies were categorized into general types of 136 

approach (i.e., machine learning with feature engineering, deep learning with feature 137 

engineering, deep learning without feature engineering) and specific algorithm. From this 138 

scope, we sought to determine whether the current approaches have potential implications for 139 

generalizability to diverse contexts of application. 140 

In particular, we prioritized the studies that included patient populations for the above 141 

analyses in Target Application and AI Model. 142 
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3. Results 143 

The initial literature search yielded a total of 1,346 studies. After restricting the search 144 

period from 2014 to 2024, 1,094 studies remained. Limiting the search to English-language articles 145 

further reduced the number to 705. Next, filtering for studies that focused on human subjects 146 

resulted in a selection of 449 studies. After removing duplicates, 379 studies were left. Based on 147 

the inclusion criteria, title screening reduced this number to 222, and abstract screening further 148 

narrowed it down to 183. Finally, after a full-text review, 111 studies were selected for the final 149 

analysis (Figure 1). Out of the selected 111 studies, 64 studies were conducted with only healthy 150 

participants [38-40, 46, 48-107], and 47 studies included data collected from patients [15-33, 108-151 

135]. 152 

In the following sections, we provide a detailed review of the selected studies with respect 153 

to each of the three scopes and describe the results of the analysis proposed. 154 

3.1 Target Application 155 

Various measurement modalities were used to measure myographic signals (Figure 3), 156 

including surface electromyography (sEMG), intramuscular EMG (iEMG), high-density sEMG 157 

(HD-sEMG), sonomyography (SMG), mechanomyography (MMG), force myography (FMG), 158 

and optomyography (OMG). Among these modalities, EMG was the most frequently used 159 

measurement modality in all the reviewed studies (Figure 3A), which accounts for 79.5% including 160 

sEMG (67.2%) [15-20, 22-25, 28, 30, 38-40, 48, 50-68, 70, 72-74, 76-80, 82-89, 92, 93, 95, 96, 161 

98, 99, 101-103, 105-122, 124-135], HD-sEMG (7.4%) [15, 17, 50, 67, 84, 86, 101, 120, 133], and 162 

iEMG (4.9%) [20, 27, 29, 31, 90, 123]. This is followed by SMG (8.2%) [21, 46, 57, 68, 79-81, 163 

89, 91, 100], MMG (5.7%) [26, 32, 33, 55, 94, 104, 134], FMG (5.7%) [49, 52, 69, 71, 97, 107, 164 

127], and OMG (0.8%) [75]. Most measurement modalities were also used in the studies including 165 
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patient group (Figure 3B). There was a notable increase in the dominance of EMG by 7.5% — 166 

2.8% from sEMG [15-19, 22-25, 28, 30, 108-122, 124-135], 0.6% from HD-sEMG [15, 17, 120, 167 

133], and 5.1% from iEMG [20, 27, 29, 31, 123] — and of MMG by 2.3% [26, 32, 33, 134], while 168 

other measurement modalities including SMG (2.0%) [21], FMG (2.0%) [127], and OMG (0.0%) 169 

were less frequently used. 170 

 171 

 172 

Figure 3. Distribution of measurement modalities used in the selected studies. (A) Among total 173 

122 measurement modalities used across 111 studies, surface electromyography (sEMG) was the 174 

most prevalent modality, accounting for 67.2% of the total measurement modalities. Other 175 

modalities included sonomyography (SMG; 8.2%), high-density sEMG (HD-sEMG; 7.4%), 176 

mechanomyography (MMG; 5.7%), force myography (FMG; 5.7%), intramuscular EMG (iEMG; 177 

4.9%), and optomyography (OMG; 0.8%). (B) Among total 50 measurement modalities used 178 

across 47 studies with patients, sEMG was the most dominant modality, accounting for 70.0%. 179 

Other modalities included iEMG (10.0%), HD-sEMG (8.0%), MMG (8.0%), SMG (2.0%), FMG 180 

(2.0%), and OMG (0.0%).  181 
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The patient-involved studies employed myographic signals with AI models mainly to 182 

perform classification and regression (i.e., prediction) applications, while the portion of such tasks 183 

varied by locations (Figure 4). Specifically, 78.4% of models in the studies focused on 184 

classification (Figure 4A) to identify various tasks including gestures [15, 16, 23, 112, 120, 122, 185 

127, 133], movements or activities [17-19, 21, 22, 24, 110, 111, 116-118, 126], and clinical 186 

conditions such as diagnosis [27-32, 109, 115, 119, 123, 124, 131, 132] and severity [33, 125]. 187 

The regression task was also conducted in 21.6% of the studies to predict assessment score [111, 188 

121], joint angle or torque [25, 26, 135], and muscle activation level or EMG values [129, 130]. 189 

In addition, these tasks were applied to various muscles located in peripheral upper and lower 190 

limbs as well as neck and torso (Figure 4B). Overall, lower limb was more frequently investigated 191 

compared to upper limb, and specifically at the ankle. Specifically, among the 47 studies that 192 

included patient populations, the tibialis anterior muscle was the most frequently assessed, 193 

appearing in 36.2% [19-21, 25, 29, 109, 114, 116-118, 123-125, 128-131], followed by the biceps 194 

brachii in 34.0% [17, 20, 21, 29-32, 108-111, 116, 121, 126, 128, 130], the rectus femoris in 21.3% 195 

[18, 29, 109, 114, 116, 117, 130, 131, 134, 135], the extensor digitorum in 17.0% [24, 112, 119, 196 

121, 122, 127, 132, 136], the triceps brachii in 17.0% [17, 32, 108, 110, 111, 116, 121, 126], and 197 

the flexor carpi radialis in 17.0% [23, 24, 33, 110, 122, 126, 127, 132].  198 
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 199 

Figure 4. Applications and muscle group locations in the 47 studies involving patients. (A) 200 

Distribution or task. Among total 51 tasks reported, classification tasks accounted for 78.4% and 201 

regression tasks for 21.6%. Note that some studies addressed both classification and regression 202 

tasks. (B) Muscle group locations. Task proportions are depicted on a body schematic, with blue 203 

indicating classification tasks and red indicating regression tasks. 204 

 205 

3.2 Sample Demographics 206 

The total sample size was 2,541 in the selected 111 studies, and the number of patient 207 

participants was 933 (36.7%) from the 47 patient-involved studies [15-33, 108-135] (Figure 5A). 208 

Among the 47 studies that recruited patient participants, 29.8% aimed to balance the number of 209 

healthy and patient participants [21, 22, 25, 27, 28, 31, 108, 111, 114, 130-132, 134, 135]. 210 

Meanwhile, 34.0% focused exclusively on patient populations while applying various AI models 211 

with myographic signals [15, 17, 19, 20, 23, 24, 26, 33, 117, 118, 120, 121, 125-128]. 212 

When looking at the pathology distribution (Figure 5B), stroke (32.2%; n = 300 in 16 213 

studies [16, 18, 23, 24, 33, 108, 111, 113, 115, 116, 118, 121, 122, 126, 127, 129]) was the most 214 

dominant, followed by PD (13.7%; n = 128 in three studies [22, 32, 128]), sarcopenia (13.3%; n = 215 

124 in three studies [125, 131, 132]), SCI (7.3%; n = 68 in ten studies [15, 17, 19, 25, 26, 110, 112, 216 

120, 130, 133]), ALS (4.1%; n = 38 in four studies [21, 27, 119, 123]), myopathy (3.6%; n = 34 in 217 
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six studies [27-31, 123]), low back pain (LBP; 3.5%; n = 33 in one study [109]), CP (2.1%; n = 20 218 

in one study [117]), neurogenic (1.7%; n = 16 in two studies [29, 31]), total hip arthroplasty (THA; 219 

1.3%; n = 12 in one study [114]), neuropathy (1.2%; n = 11 in one study [28]), MS (1.2%; n = 11 220 

in one study [134]), knee abnormality (KA; 1.2%; n = 11 in one study [135]), neuronal (1.0%; n = 221 

9 in one study [30]), diabetic foot ulcer (DFU; 1.0%; n = 9 in one study [124]), and diabetic 222 

nephropathy (DN; 0.6%; n = 6 in one study [124]). 223 

Interestingly, the age distribution for healthy participants was highly focused on the young 224 

adults aged 20–30 years old (Figure 5C), while the age of patient participants was more broadly 225 

distributed as supported, in part, by the various target clinical populations (e.g., CP, SCI, stroke, 226 

neurodegenerative diseases), nevertheless, more focused on the middle age group (e.g., over 40 227 

years old). Overall, discrepancy between the age distribution, both within and across studies, 228 

between healthy vs. patient population was evident. 229 

 230 

 231 

Figure 5. Demographic characteristics of study populations. (A) Distribution of healthy vs. patient 232 

population among total 2,541 participants across 111 studies. (B) Distribution of pathology among 233 

total 933 participants in the 47 studies with patients. PD: Parkinson’s disease; Mixed: 234 

radiculopathy, polymyositis, muscular dystrophy, peripheral nerve injuries, normal pressure 235 
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hydrocephalus, and stroke; SCI: spinal cord injury; ALS: amyotrophic lateral sclerosis; LBP: low 236 

back pain; CP: cerebral palsy; THA: total hip arthroplasty; MS: multiple sclerosis; KA: knee 237 

abnormalities; DFU: diabetic neuropathy with ulceration; and DN: diabetic neuropathic. (C) 238 

Scaled density plot of the estimated age distribution across 80 studies with a total of 1,340 239 

participants. The healthy group (blue) is predominantly younger, whereas the patient group 240 

(orange) exhibits a broader age range with a slight increase in density among older participants. 241 

 242 

The 81 studies that reported the number of male and female participants [15-17, 19, 21, 23, 243 

27-33, 39, 40, 46, 48, 52-57, 59-65, 68, 69, 71-77, 79-91, 93, 94, 97, 100, 102-106, 108, 110, 111, 244 

116-127, 130-132, 134, 135] recruited more male participants (n = 971; 58.6%) than female 245 

participants (n = 687; 41.4%) as a whole (Figure 6A). Specifically, 26.1% recruited a relatively 246 

balanced number of male and female participants, range of the female-to-male ratio of 40–60% 247 

[16, 17, 21, 27, 29, 33, 40, 46, 59, 62, 64, 69, 74, 75, 84, 87, 89, 97, 102-104, 106, 116, 117, 122, 248 

123, 125, 131, 134]. There were also several studies with more female participants, range of the 249 

female-to-male ratio of 50–100% [15, 17-24, 26, 27, 29-33, 108, 109, 112, 114, 117, 118, 120, 250 

121, 123-128, 130, 132]. Relationship between the number of male and female participants, 251 

however, revealed that in general even at an individual study level, the samples were biased 252 

towards more male participants (Figure 6B).  253 
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 254 

Figure 6. (A) Distribution of sex among total 1,658 participants in 81 studies where the number 255 

of both male and female participants was reported. (B) Relationship between male and female 256 

participants in the selected studies. Each circle represents an individual study, with circle size 257 

indicating total participant count. Blue and orange represent healthy and patient groups, 258 

respectively. 259 

 260 

Affiliations of the authors in the selected studies — an estimate of ethnicity (or nationality) 261 

in the participant population — were highly biased to only few regions across the globe: mainly 262 

from northeastern Asia, western Europe, and north America (Figure 7A). Among the 227 different 263 

countries in the 111 studies (Figure 7B), 37.4% were from Asia [15, 18, 20, 21, 23-26, 28, 31, 38-264 

40, 48, 50, 51, 53, 54, 56, 57, 59, 60, 63, 67, 70, 75, 77, 78, 82, 88, 90, 92-95, 101, 105-108, 111, 265 

112, 115, 116, 118, 121-124, 126, 127, 129, 131, 132, 135], and 37.0% were from Europe [16, 17, 266 

19, 23-25, 27, 29, 30, 32, 33, 50, 52, 55, 57-61, 63, 64, 68, 72, 73, 81, 83, 86, 87, 90, 96-99, 102, 267 

103, 109, 114, 116-120, 125, 129, 133, 134]. North America accounted for 19.8% [15, 19, 22, 24, 268 

46, 49, 66, 69-71, 73, 74, 76, 79, 80, 84-86, 89, 91, 93, 100, 104, 110, 112, 120, 128, 130], followed 269 

by Oceania for 3.5% [23, 26, 59, 62, 72, 86, 90, 118], South America for 1.3% [65, 82, 113], and 270 

Africa for 0.9% [97]. When considering the 47 patient-involved studies only (Figure 7C), Europe 271 

had the largest proportion at 43.4% [16, 17, 19, 23-25, 27, 29, 30, 32, 33, 109, 114, 116-120, 125, 272 
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129, 133, 134], followed by Asia at 40.4% [15, 18, 20, 21, 23-26, 28, 31, 108, 111, 112, 115, 116, 273 

118, 121-124, 126, 127, 129, 131, 132, 135], North America at 12.1% [15, 19, 22, 24, 110, 112, 274 

120, 128, 130], Oceania at 3.0% [23, 26, 118], South America at 1.0% [113], and Africa at 0.0%. 275 

 276 

 277 

Figure 7. Distribution of geographic location and ethnicity based on the authors’ affiliations in the 278 

selected studies. (A) Global distribution, highlighting a higher concentration of the studies in North 279 

America, Europe, and Asia, with each circle representing an individual study and sized according 280 

to total participant count. Blue and orange represent healthy and patient groups, respectively. 281 

Distribution of ethnicity from 227 locations in 111 studies (B) and from 99 locations in 47 studies 282 

with patients (C). Note that multiple author affiliations per study result in a higher number of 283 

locations than studies. 284 

 285 

3.3 AI Model 286 

Various learning approaches and algorithms were used (Figure 8). Among the patient-287 

involved studies, 90.3% employed various feature extraction and feature selection methods to 288 

utilize the measured myographic signals in different AI models [15, 17-20, 23-33, 108-111, 113, 289 

115, 116, 118-127, 129-134]. Among the 28 studies utilizing neural networks (NNs), 64.3% further 290 
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incorporated separate feature engineering techniques — while not necessary for deep learning 291 

models — for their analysis [24-28, 31, 32, 111, 113, 115, 118, 121, 123, 125, 126, 129-131]. In 292 

contrast, 35.7% used preprocessed myographic signals as direct input without additional feature 293 

engineering [16, 21-23, 112, 114, 117, 128, 133, 135]. 294 

In the 33 studies employing traditional machine learning methods for classification or 295 

regression tasks, 66.7% of the studies utilized sEMG [18, 19, 23, 25, 30, 108-111, 113, 115, 116, 296 

118-120, 122, 124, 125, 127, 130-132, 134], 12.1% applied HD-sEMG [15, 17, 120, 133], and 297 

15.2% incorporated iEMG [20, 27, 29, 31, 123] as their primary measurement modality. 298 

Additionally, 9.1% investigated MMG [32, 33, 134], 3.0% focused on FMG [127], and 0% 299 

explored SMG. These studies mainly relied on conventional machine learning algorithms, such as 300 

k-nearest neighbors (KNN), linear discriminant analysis (LDA), support vector machine (SVM), 301 

decision tree (DT), or random forest (RF). In contrast, 28 studies that implemented deep learning 302 

techniques using NNs showed 75.0% focused on sEMG [16, 22-25, 28, 111-115, 117, 118, 121, 303 

125, 126, 128-131, 135], 3.6% applied HD-sEMG [133], and 10.7% utilized iEMG [27, 31, 123]. 304 

Furthermore, 7.1% worked with MMG [26, 32], 3.6% with SMG [21], and 0% with FMG. 305 

Among the 39 papers related to classification, a survey of various AI models revealed that 306 

69.2% employed NNs [15, 16, 19, 21-24, 27, 28, 30-32, 111, 112, 114, 115, 117-119, 123-128, 307 

131, 133], 38.5% used SVM [18-20, 27, 29, 31, 111, 115, 116, 123-125, 127, 132, 134], and 25.6% 308 

utilized LDA [17, 23, 110, 118-120, 122, 127, 133, 134]. In contrast, among the 11 papers related 309 

to regression, 90.9% applied NNs [25, 26, 111, 113, 117, 121, 129, 130, 133, 135], 9.1% employed 310 

Support Vector Regression (SVR) [111], and 9.1% used Linear Discriminant Analysis (LDA) 311 

[133]. It is important to note that the total number and percentages are higher due to the use of 312 

multiple sensors or models within a single paper. 313 
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 314 

Figure 8. Sankey diagram illustrating the relationships between approach, measurement modality, 315 

algorithm, and application reported in the 47 studies with patients. This diagram visualizes the 316 

interconnections between different model approaches, including machine learning with feature 317 

engineering (ML+FE), deep learning with feature engineering (DL+FE), and deep learning 318 

without feature engineering (DL), and their applications in classification and regression tasks. 319 

sEMG: surface electromyography; HD-sEMG: high-density sEMG; iEMG: intramuscular EMG; 320 

SMG: sonomyography; MMG: mechanomyography; FMG: force myography; LR: linear 321 

regression; NB: naïve bayes; KNN: k-nearest neighbors; NN: neural network; SVM: support 322 

vector machine; LDA: linear discriminant analysis; RF: random forest; DT: decision tree; LASSO: 323 

least absolute shrinkage and selection operator; MDS: multidimensional scaling; NMF: non-324 

negative matrix factorization; and PCA: principal component analysis. 325 

 326 

4. Discussion 327 

In this review, we sought to provide evidence from current literature and state-of-the-art 328 

applications for whether using myographic signals with AI can offer better insights and 329 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2025. ; https://doi.org/10.1101/2025.04.02.25325099doi: medRxiv preprint 

https://doi.org/10.1101/2025.04.02.25325099
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

performance in understanding and assessing motor impairments. Specifically, our goal was to 330 

conduct a scoping review of relevant works up to date using myographic signals with AI in terms 331 

of: 332 

● Target Application, to determine whether the use of myographic signals indeed can provide 333 

more tailored insights into assessing motor impairment and/or allow for better performance of 334 

AI models compared to other measurement modalities such as IMU. 335 

● Sample Demographics, to determine whether there exist any potential biases that may hinder 336 

the generalization of the developed/applied AI models, accounting for the heterogeneity in a 337 

particular clinical target population, or even broader populations in general. 338 

● AI Model, to determine whether the type of the models being used have potential implications 339 

for generalizability to diverse contexts of application. 340 

In the following sections, we review the main findings, discuss the limitations and 341 

remaining challenges, and propose potential solutions and future directions on the above aspects. 342 

4.1 Target Application 343 

In summary, we found that dominantly EMG, especially sEMG, is being used to acquire 344 

myographic signals (Figure 3), where the measurement took place in various body parts or muscles 345 

(Figure 4B), largely for classification tasks (Figure 4A). 346 

In agreement with our postulation, we found promising evidence demonstrating that 347 

myographic signals can provide more direct insight into the muscle activity over other 348 

measurement modalities such as IMU that primarily capture movement-initiated patterns. Indeed, 349 

most of the reviewed studies demonstrated that the utilization of myographic signals with AI offers 350 

possibilities in: 1) the diagnosis of neuromuscular diseases, including myopathy [27-31, 123], 351 

neurogenic [29, 31], ALS [20, 21, 27, 119, 123], and DN [124] ; 2) the detection of abnormal 352 
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muscle activity patterns from resting EMG signals [20] and from B-mode ultrasound images [91]; 353 

and 3) the assessment of the physical activity level in MS patients [134] and of the severity level 354 

of sarcopenia in older adults [125, 131, 132]. Additionally, we found some studies in the context 355 

of human-machine interfaces (HMIs), to detect/recognize user intentions [77, 137]. 356 

Interestingly, we also found studies that demonstrate the use of myographic signals in 357 

combination with other motion sensor modalities (e.g., kinematics, accelerometer, gyroscope, 358 

IMU) offering better performance, compared to just using myographic signals or motion signals, 359 

in classification [32, 111, 116, 128] and emulating clinical scores [111]. These findings suggest 360 

that different sensor modalities such as myographic and motion signals can complement each other 361 

for better (more accurate, robust) performance [32, 122]. 362 

Despite the promising evidence for the unique benefits that myographic signals can offer 363 

when used with AI for motor impairment assessment, there are remaining challenges. Owing to 364 

the inherent characteristics of EMG signals — capturing electrical action potential conducted 365 

through nerves — robust acquisition is relatively difficult, compared to other measurement 366 

modalities. In particular, non-stationarity of the signal, presence of noise from many sources [138, 367 

139], as well as natural redundancy in how the same motor task can be performed using different 368 

motor commands [140, 141], induce variations (e.g., spatiotemporal, time and/or frequency 369 

domain) to the input for an AI model [142] and thus likely degrade the model performance (training 370 

vs. unseen dataset), especially for  applications that are intended to be used for long period of time 371 

(e.g., across days or longitudinal) [143, 144]. In addition, due to the unique information based on 372 

frequency contents [145], acquisition requires relatively high sampling rate of ≥1 kHz (cf. usually 373 

~100 Hz for IMU), which demands for more power consumption and computational resources 374 

(e.g., processing, data storage). It is also worth noting that while other myographic signals based 375 
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on SMG, MMG, FMG, and OMG — capturing physical changes in response to muscle excitation 376 

— can potentially overcome some of the limitations and may provide more robust inputs for AI 377 

models, these modalities also come with their own challenges, for example, related to signal-to-378 

noise ratio and susceptibility to motion artifacts [146, 147]. 379 

Advances in sensor (e.g., materials, form factors, power/resource management) [148], 380 

signal processing techniques [145], and robust AI algorithm development [14] will be essential for 381 

overcoming these challenges. Another noteworthy future direction that this scoping shed light on 382 

is sensor fusion approach. Although the current review focused on the use of myographic signals 383 

in comparison to and implication with respect to motion data (e.g., IMU), other measurement 384 

modalities such as ECG, PPG, EDA, and/or EEG [149, 150] may provide additional, more 385 

comprehensive yet tailored insights into the physiological state underlying a specific motor 386 

impairment at an individual-specific, systemic level, complementing the unique motor perspective 387 

conferred by myographic signals; please refer to section 4.4. for discussions on the implications in 388 

terms of implementation. 389 

4.2 Sample Demographics 390 

In summary, significant demographic biases, particularly regarding age, sex, ethnicity, and 391 

pathology, were observed in the reviewed studies (Figures 5–7). 392 

Given the established anatomical, biomechanical, and physiological differences across 393 

diverse populations, these biases would likely introduce variations in not only the input 394 

myographic signals that any AI model is being trained with but also the (often latent) features 395 

being captured/learned. Consequently, such biases may limit the generalizability of the developed 396 

application to broader target and ultimately hinder the clinical translation. Implication of such 397 

differences across diverse populations is increasingly gaining attention in science, probably due to 398 
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heterogeneity across individuals. For example, there are measurable sex-/ethnicity-based 399 

differences in inherent neuromuscular performance such as body composition (e.g., muscle mass 400 

and fat distribution) [151-153], muscle strength and power [152, 154, 155], muscle architecture 401 

(e.g., fascicle length, pennation angle, muscle thickness) [156, 157], and muscle fiber 402 

characteristics (e.g., fiber type, cross-section area) [158, 159]. Furthermore, age-related changes, 403 

exercise adaptations, and pathological conditions can lead to even greater diversity in 404 

neuromuscular mechanisms including motor unit firing behaviors (e.g., firing rate, recruitment) 405 

[160-162], muscle fiber conduction velocity [163-165], muscular changes in size (e.g., atrophy, 406 

hypertrophy) [158, 166, 167], architecture [168-170], material properties (e.g., composition of 407 

adipose tissue and fibrous collagen in extracellular matrix) [171-173], and fiber type composition 408 

[158, 164, 174], and muscle coordination [175-177]. In addition, lifestyle-related factors such as 409 

physical activity, nutrition, and comorbidities may further introduce the variability of myographic 410 

signals [178-180]. 411 

The inclusion of diverse populations is essential to enhance the generalizability of research 412 

findings across a wide range of individuals and contexts. However, it is well-acknowledged that 413 

acquisition of such a comprehensive dataset practically is nearly impossible for any individual 414 

investigator or research lab, especially for clinical population [181]. Such challenge can be 415 

overcome with effort as a community, such as openly sharing data (e.g., repository, database), 416 

which, encouragingly, seems to be the recent trend in many disciplines [182-184]. In order to 417 

maximize the potential of such combined effort, standardized protocols for data acquisition and 418 

processing are essential [182]. Moreover, the integration of advanced techniques, such as data 419 

augmentation leveraging generative AI models [185, 186], may provide valuable insights. 420 

Nevertheless, it is essential to carefully consider the methodological implications and caveats 421 
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associated with these approaches, including potential biases and limitations in data quality, validity, 422 

and reliability. Additionally, while longitudinal, real-world tracking of quantitative motor 423 

impairment-related data, including myographic signals, is becoming more accessible with the 424 

advances in wearable sensor and remote monitoring techniques [187, 188], a care must be taken 425 

in protecting healthy-related and privacy information [184]. 426 

4.3 AI Model 427 

In summary, we found that machine learning with feature engineering is the most dominant 428 

category of AI models that are being used with myographic signals for clinical applications (Figure 429 

8). It was interesting to note that deep learning models, which by virtue does not necessarily require 430 

a priori definition of specific features to learn from the input dataset [189], were more often used 431 

with feature engineering. We also found that neural network is the most widely used model 432 

type/architecture, where, in many cases, various models were used in one study to compare the 433 

performances. 434 

The performance of an AI model trained with relatively small data (e.g., sample size) with 435 

respective to model complexity (e.g., number of features or parameters) as well as for particular 436 

purpose (e.g., classification or prediction) will likely not generalized to other data set or application 437 

[190]. While feature engineering can improve the performance of AI models, it may potentially 438 

increase the risk of overfitting [191]. In addition to ensuring the diversity in the input data/sample 439 

discussed above (in section 4.2), there are approaches that can be adopted to improve the 440 

generalizability and robustness of the AI model for broader contexts of application. For example, 441 

transfer learning is a scheme that leverages cross-domain techniques to generalize a model pre-442 

trained with initial source data/domain to newly recorded target data/domain without the necessity 443 

for complete retraining or recalibration of the model [192]. Successful examples, in the context of 444 
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hand gesture classification, include retaining accuracy across EMG data measured from different 445 

users, sensor locations, and days (within the same user) [193]. Alternatively, various model-446 

specific/agnostic explainable AI techniques and tools applied at local/global scope (e.g., SHapley 447 

Additive exPlanations (SHAP) or Local Interpretable Model-Agnostic Explanations (LIME) 448 

[194]), may allow for identification of key features that can be adapted to guide and facilitate the 449 

generalization of a particular AI model to a different set of data or application (e.g., patient, clinical 450 

target). Compared to other disciplines and applications, such approaches have been rarely applied 451 

for AI models using myographic signals, especially for clinical target [195, 196]. 452 

While our initial intent was to also investigate, among the studies reviewed, the effect of 453 

model complexity, such as by examining its correlation with the sample size and/or performance, 454 

we could not find a single, suitable measure for model complexity that can be commonly applied 455 

to all models reviewed [197]. Moreover, many studies did not report the basic information about 456 

the AI model (e.g., architecture, size) from which we can infer the complexity [24, 27, 126]. At 457 

the minimum, if not tested explicitly, it is encouraged that such information is provided to aid in 458 

gauging the generalizability of the model. Furthermore, we assert that the development of 459 

universal/versatile measures and means to evaluate the model complexity is needed, which, 460 

analogous to the established power analysis tools for statistics, can inform and ultimately guide 461 

the selection of type, size, structure/architecture of AI models to use. 462 

4.4 Clinical translation 463 

Ultimately, we emphasize the following two important aspects to be considered, and 464 

implemented, for any application using myographic signals with AI to find its place in the real 465 

world, that is, deployed in the field (e.g., clinics, bedsides, home) and adopted by the users (e.g., 466 

clinicians, patients, and their caregivers). Firstly, the technology as the entire package should be 467 
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user-friendly. For example, the sensor/device should be easy to “do-on-and-off” (i.e., 468 

easily/quickly placed without much care), requiring minimal (ideally single) placement and setup. 469 

In case of multi-modal measurements or sensor fusion, recent advancements in sensor integration 470 

technology appear to be promising to pack multiple sensors onto a single, smaller chip [149]. The 471 

control/software interface should also be simple and intuitive, requiring minimal to no technical 472 

knowledge and/or training for clinicians and patients to easily use [198]. Secondly, the model 473 

outcomes should provide clinically relevant information. Whether providing a very close link (e.g., 474 

strong correlation) to the conventional clinical assessment measures or newly devised outcome 475 

metrics, the information gathered/synthesized must readily translate to what clinicians currently 476 

use and correspond to what the patient experiences in everyday life [199, 200]. 477 

 478 

5. Conclusion 479 

In conclusion, this scoping review highlights the promising application of myographic 480 

signals with AI in understanding and assessing motor impairments. Through an extensive search 481 

of the Scopus and PubMed databases, our analysis demonstrated that sEMG is the predominant 482 

measurement modality for acquiring myographic signals, mainly used for classification tasks, and 483 

that machine learning with feature engineering is the most common AI approach employed in 484 

clinical applications, including identification of neuromuscular diseases. Moreover, our findings 485 

showed significant demographic biases within and across studies, suggesting the need for more 486 

diverse and representative datasets. We also discussed two important aspects to translate this effort 487 

of using myographic signals with AI into real-world clinical practice. Ultimately, we believe that 488 

myographic signals, given the essential physiological information it conveys at high spatial and 489 
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temporal resolution, combined with AI approaches that robust and accurate performance offers 490 

great potential for precision medicine in the context of motor impairment assessment. 491 
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